OCTOBER 15, 2018 # AIEQ Symposium - Montreal The Case for Caribbean Microgrids Matt Nejati ### What is a microgrid? #### Control is the key #### Microgrid definition Distributed energy resources and loads that can be operated in a controlled, coordinated way either connected to the main power grid or in "islanded"* mode. Microgrids are low or medium voltage grids without power transmission capabilities and are typically not geographically spread out. #### Grid-connected Microgrid ### Market overview ### Segments and drivers | | | Typical customers | Main drivers | | | | | |---|---------------------------|---|-------------------------------|-------------------------------|---|----------------------|------------------------| | | Segments | | Social Access to electricity | Economic Fuel & cost savings | Environmental Reduce CO ₂ footprint and pollution | Operational | | | | | | | | | Fuel
independence | Uninterrupte
supply | | | Island utilities | (Local) utility, IPP* | | ✓ | ✓ | ✓ | (✓) | | | Remote
communities | (Local) utility, IPP,
Governmental
development institution,
development bank | ✓ | ✓ | | ✓ | | | - | Industrial and commercial | Mining company, IPP, Oil & Gas company, Datacenter, Hotels & resorts, Food & Beverage | | √ | (~) | √ | √ | | | | Governmental defense institution | | (\checkmark) | (√) | √ | √ | | | | (Local) utility, IPP | | | (√) | | √ | | | | Private education
institution, IPP,
Government education
institution | | (~) | √ | | (√) | ^{*} Independent Power Producer (✓): Secondary driver ^{√:} Main driver ### Why are microgrids so popular in the Caribbean? Isn't it obvious? ### **The Business Case** Value Stacking ### **Economic Optimization** What is the right solution? Minimizing frequency deviation from industrial loads #### **Customer:** **Grand Bahama Power Company** #### Solution: 9.5MW/7.3MWh BESS Fast Response Controls #### **Project Drivers:** Uninterrupted Supply Fuel and Cost Savings CO₂ Reductions #### **Applications:** Frequency Management Renewable Integration Highly volatile load Projected daily solar shape Applying storage with desired control parameters Storage affected load profile Current load profile Ramp rate differential ### WEB Aruba IGMS Project #### Building a foundation for increased renewables #### **Customer:** WEB Aruba #### **Project Drivers:** Uninterrupted Supply Fuel and Cost Savings CO₂ Reductions #### **Applications:** Renewable Integration Frequency Management Intelligent Load Shedding Load and Generation Forecasting Generation Optimization ### WEB Aruba IGMS Project Distribution load shedding — granular and dynamic ### **Key Takeaways** ### Questions? Do not hesitate to contact me... #### **Contact Info** #### Matt Nejati - ABB Microgrids and Energy Storage - 416.575.8081 - matthew.nejati@ ca.abb.com